Catálogo CEIBA de la Biblioteca Central de FAUBA


Vista normal Vista MARC Vista ISBD

Distribuciones de los estadísticos y estimadores paramétricos de la regresión ancestral bajo apareamiento aleatorio y selección

Ubicación: T.G.575 JIM
Por: Jiménez Alfaro, Esteban.
Colaborador(es): Cantet, Rodolfo Juan Carlos [dir.] | Forneris, Natalia Soledad [co-dir.].
Publicación: 2019Descripción: 72 p. grafs.Tipo de material: Tesis de posgrado de lectura en biblioteca. Recurso electrónico.Tema(s): GENETICA | BIOMETRIA | MODELOS MATEMATICOS | COVARIANZA GENETICA | HERENCIA GENETICAT20190901 Recursos en línea: Haga clic para acceso en línea Nota de tesis: Tesis. Universidad de Buenos Aires. Facultad de Agronomía. Escuela para Graduados. Magister de la Universidad de Buenos Aires área Biometría y Mejoramiento. Maestría en Biometría y Mejoramiento. 2019. Resumen: La Regresión Ancestral (AR) es un modelo genético cuantitativo paramétrico y causal. A diferencia de otros modelos de predicción basados en Selección Genómica, AR permite considerar el efecto de la recombinación y la herencia en segmentos, así como realizar la inversión de la matriz de (co)varianzas del modelo (−1) sin necesidad de calcular primero , porque además AR es un proceso estocástico Markoviano. El objetivo de esta tesis fue estimar mediante simulación estocástica las distribuciones de probabilidad de: a) los parámetros del modelo AR (βS, βD), b) las relaciones realizadas de identidad por descendencia (IBD) entre pares abuelo(a)-nieto(a) (RIBD-AN), c) los estadísticos suficientes para la estimación de βS y βD, y d) el coeficiente de consanguinidad bajo AR (FAR). Se simularon dos poblaciones animales, una con apareamientos al azar (45095 pares) y otra bajo selección (46561 pares). El algoritmo de estimación incluyó un sistema recursivo de ecuaciones simultáneas de los parámetros βS y βD, los cuales provienen de las recombinaciones del genoma de los abuelos ocurridas en los padres durante la meiosis y transmitidas a los nietos. Se estimaron los “núcleos” (o kernel) de las distribuciones de RIBD-AN, los estadísticos suficientes, βS, βD y FAR con un método no paramétrico dentro del programa PROC KDE de SAS. Entre distintas distribuciones evaluadas, la Beta mostró el mejor ajuste para las RIBD-AN, tomando como criterio el valor máximo del logaritmo de la función de verosimilitud; en tanto que los estimadores de βS, βD y los estadísticos suficientes siguieron distribuciones normales univariadas. La selección indujo a las distribuciones de las RIBD-AN a ser asimétricas a la derecha y a mostrar mayor magnitud en las medias y en la dispersión. Además, se observó que FAR siguió una distribución Exponencial, con valores esperados y varianzas de mayor magnitud con los datos selectos. En general, la selección aumentó la magnitud y variabilidad del material genómico compartido IBD, tanto en las relaciones de parentesco como en la consanguinidad.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Signatura Estado Fecha de vencimiento
Tesis de posgrado de lectura en biblioteca Tesis de posgrado de lectura en biblioteca Biblioteca Central

Facultad de Agronomía - Universidad de Buenos Aires

Solicitar en Sala
T.G.575 JIM (Navegar estantería) Disponible

Tesis. Universidad de Buenos Aires. Facultad de Agronomía. Escuela para Graduados. Magister de la Universidad de Buenos Aires área Biometría y Mejoramiento. Maestría en Biometría y Mejoramiento. 2019.

La Regresión Ancestral (AR) es un modelo genético cuantitativo paramétrico y causal. A diferencia de otros modelos de predicción basados en Selección Genómica, AR permite considerar el efecto de la recombinación y la herencia en segmentos, así como realizar la inversión de la matriz de (co)varianzas del modelo (−1) sin necesidad de calcular primero , porque además AR es un proceso estocástico Markoviano. El objetivo de esta tesis fue estimar mediante simulación estocástica las distribuciones de probabilidad de: a) los parámetros del modelo AR (βS, βD), b) las relaciones realizadas de identidad por descendencia (IBD) entre pares abuelo(a)-nieto(a) (RIBD-AN), c) los estadísticos suficientes para la estimación de βS y βD, y d) el coeficiente de consanguinidad bajo AR (FAR). Se simularon dos poblaciones animales, una con apareamientos al azar (45095 pares) y otra bajo selección (46561 pares). El algoritmo de estimación incluyó un sistema recursivo de ecuaciones simultáneas de los parámetros βS y βD, los cuales provienen de las recombinaciones del genoma de los abuelos ocurridas en los padres durante la meiosis y transmitidas a los nietos. Se estimaron los “núcleos” (o kernel) de las distribuciones de RIBD-AN, los estadísticos suficientes, βS, βD y FAR con un método no paramétrico dentro del programa PROC KDE de SAS. Entre distintas distribuciones evaluadas, la Beta mostró el mejor ajuste para las RIBD-AN, tomando como criterio el valor máximo del logaritmo de la función de verosimilitud; en tanto que los estimadores de βS, βD y los estadísticos suficientes siguieron distribuciones normales univariadas. La selección indujo a las distribuciones de las RIBD-AN a ser asimétricas a la derecha y a mostrar mayor magnitud en las medias y en la dispersión. Además, se observó que FAR siguió una distribución Exponencial, con valores esperados y varianzas de mayor magnitud con los datos selectos. En general, la selección aumentó la magnitud y variabilidad del material genómico compartido IBD, tanto en las relaciones de parentesco como en la consanguinidad.

No hay comentarios para este ítem.

Ingresar a su cuenta para colocar un comentario.

Haga clic en una imagen para verla en el visor de imágenes

Av. San Martín 4453 - 1417 – CABA – Argentina.
Sala de lectura de Planta Baja: bibliote@agro.uba.ar (54 11) 5287-0013
Referencia: referen@agro.uba.ar (54 11) 5287-0418
Hemeroteca: hemerote@agro.uba.ar (54 11) 5287-0218